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Algebraic Spinors and SUSY 
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Using the Dirac-Kaehler formalism, we formulate the supersymmetric Wess- 
Zumino model. Special attention is paid to the proper definition of a two- 
dimensional spinor, its adjoint, and its generalization to other dimensions. 

1. INTRODUCTION 

The Dirac-Kaehler  (DK) approach (Kaehler, 1962) to linearization of  
the Kle in -Gordon  equation has been considered by several authors 
(Plebafiski, 1984; Becher and Joos, 1982). Two of the characteristics that 
make the DK an interesting alternative to the Dirac equation are the 
following: (i) It has a clear geometric interpretation (Becher and Joos, 
1982). In particular, the spinor is seen as a coherent superposition of 
differential forms. (ii) It provides a natural framework to describe chiral 
fermions on the lattice (Becher, 1981). 

The relation between differential forms and the DK spinors suggests 
the use of  the latter in the formulation of  supersymmetric theories (Banks 
et al., 1982). In fact, this approach will open the interesting possibility of 
treating such theories in the lattice approximation. Indeed, the Wess-Zu-  
mino model in two dimensions has been constructed (Banks et al., 1982; 
Elitzur and Schwimmer, 1983; Aratyn and Zimmerman, 1984). The exten- 
sion of  these considerations to four-dimensional models on the lattice 
depends on the understanding of the geometric properties of the fermions 
and the correct formulation of the corresponding Lagrangian in the 
continuum case. 
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In this work we present a formulation of the SUSY Wess-Zumino 
model in four dimensions. In order to achieve this goal it was necessary to 
clarify the definition of a spinor. It is a well-known fact that the Dirac 
spinors are elements of a vector space on which the elements of the SO(3,1) 
group, extended by parity, act irreductibly. In this approach to the Dirac 
spinors we know the way they transform under SO(3,1); however, there is 
a nongeometrical characteristic associated to them. 

Alternatively, some authors (Aratyn and Zimmerman, 1985; Plebafi- 
ski, 1984) define the spinors in terms of the even part of a Clifford algebra 
and this has to be compared to the more conventional one in terms of a left 
ideal (Becher and Joos, 1982). As we shall see later, these definitions may 
coincide only in two dimensions. 

The paper is organized in the following way: in Section 2 we make a 
brief introduction to algebraic spinors and work explicitly the case in which 
the vector space is taken to be the cotangent space-time. Section 3 contains 
a description of the DK formalism, the derivation of DK and adjoint DK 
equations, and its relation to the Dirac equation. In Section 4 we use the 
algebraic spinors in the formulation of the Wess-Zumino supersymmetric 
model. 

2. A L G E B R A I C  S P I N O R S  

For an N-dimensional vector space V with nonsingular metric g we 
can choose a basis {y', # = 1, 2 , . . . ,  N} for which g is represented by the 
matrix g'~. If  the basis {y'} is orthonormal, then g ~  is diagonal of 
signature (p, q), with p and q the number of + l's and - l 's appearing in 
g 'L We obtain a Clifford algebra C N  by introducing an associative and 
distributive product v between the elements of this basis. This is a 
2N-dimensional algebra associated to V and g once the aforementioned 
product is restrained to satisfy the relation 

~ V T V + y ~  v y ~ = 2 g  ~ (1) 

We denote the antisymmetric part of the Clifford product (conventionally 
called Grassman product) by ^ ,  which, according to equation (1), is given 
by 

Y~' ^ T ' "  - �89 yv] v = 7 '~ v y~ - gU~ (2) 

A basis for C N  can be expressed in terms of the Grassman product of y"'s: 

{1, 7~, ~,1~2 . . . .  , ~2.--~N} 

where 

ym,Uk.. .~j = ~u~ A 7 uk A " " " A y,uj 
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An algebraic spinor can be defined (Becher and Joos, 1982; Lounesto, 
1986) as the left ideal of the Clifford algebra we have just constructed. 

The connection between the algebraic and Dirac spinors is clarified if 
we observe that the elements of the algebra defined by 

M , ~  _= �88 7v] v 

satisfy the commutation rules 

[ M  p~, M ~'~] = - g P ~ M  a# --F g ' ~ ' M  pl~ - -  g ' ~ # M  p~162 -I- g P # M  ~ 

which, for Minkowskian space-time, are the commutation rules of the 
SO(3,1) group. Hence, we can conclude that algebraic spinors are a 
geometric generalization of Dirac spinors. 

In order to give an illustrative example of a Clifford algebra and the 
construction of algebraic spinors, in this section we discuss the cotangent 
space-time and the associated Clifford algebra. Let d x  ~', tt = 1 , . . . ,  4, be a 
basis of the cotangent space of Minkowskian space-time. We introduce the 
Clifford product for every two elements of the basis as 

d x  u v d x  v = gl ,  V + d x  ~ ^ d x  ~ (3) 

where ^ denotes the usual exterior product for differential forms (Becher 
and Joos, 1982). Furthermore, we must also consider the Clifford product 
of an element of the basis d x  ~' and a form ~. This distributive and 
associative product is defined by 

d x  ~' v �9 = d x  t' A ~ + e~_]~ 
(4) 

v d x  ~ = cb A d x  u - -  e ~ l q J  

where e"_] stands for the contraction which is a linear operator defined by 
the following relations: 

e~'Jl  = O, e ~ j d x  ~ = gUV 
(5) 

^ = e'_ye + ( A O ) l ' e  

where the main automorphism A is defined by 

A :  AP~--~ A p, A ( r 1 6 2  p 

Equations (3)-(5) complete the construction of the Clifford algebra for the 
cotangent space. To define an algebraic spinor, we will decompose this 
algebra in left and right ideals. With this aim we introduce the new basis 
Z,b (a, b = 1 , . . . ,  4) given by [we use the notation of Becher and Joos 
( 1982)] 

z = Z 
H 
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where yu are Dirac matrices in an arbitrary representation and B is an 
antimorphism defined by 

[x] denotes the integer part of x. Every element of the Clifford algebra can 
be spanned in the following two equivalent ways: 

1~ = Z ~)H (X) NX H; ~J = E ~ab (X)Zab ( 6 )  
It ab 

This basis has the properties 

d x  ~ v Z~b = ~ ,  ~r (~ )acZcb (7) 
c 

and 

Zab V Zcd = 4Zcb6ad (8) 
Using the relations (6) and (8), we arrive at the equation 

v Zab = 4 ~ ~c,~Zr (9) 
c 

i.e., (I) v Zab belongs to the space generated by the basis Z~b (C = 1 . . . . .  4) 
and fixed b and acts as a projector over this space. Thus a left ideal is a 
subspace generated by the elements of the basis Z~b with fixed b. In a 
similar way, right ideals are the subspaces generated by the Zab basis with 
fixed a. For  explicit calculations we will use matrices in the Weyl represen- 
tation, 

,0_(01 ,,__(o oO,) 
For this representation of the matrices we arrive at the following 

expression for the Z basis: 

ZI1 = 1 + d x  ~ - i dx  12 - i dx  0123 

Z I 2  = d x  ~ _ idx  ~ + d x  13 _ idx  23 

ZI3  = - d x  3 - d x  ~ - idx  ~ + idx  123 

Z14 = - d x  I + idx  2 + dx 013 _ i dx  023 

Z21 = d x  ~ + idx  ~ _ d x  13 _ idx  23 

Z22 = 1 - d x  ~ + idx  12 _ idxO123 

Z23 = - d x  1 - idx  2 - d x  ~ - i dx  ~ 

Z24 = d x  3 - d x  ~ + idx  ~ + idx  123 (10) 
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Z31 

Z32 
Z33 

Z~4 

Z41 

~--- d x  3 2r- d x  0 - -  i d x  012 - -  i d x  123 

= d x  1 _ i d x  2 + dx 013 _ i d x  023 

= 1 - d x  ~ - i d x  12 + i d x  ~ 

= - d x  m + i d x  ~ + d x  13 _ i d x  23 

= d x  I + i d x  2 - dxOl3 _ idx023 

2009 

242 : _ d x  3 of_ d x  0 -4- i d x  ~ - i d x  123 

243 = - - d x  Ol _ i d x  02 - -  d x l 3  _ i d x  23 

Z44 = 1 + d x  ~ + i d x  12.4- i d x  0123 (10) 

The basis has the following interesting properties, which will be useful in 
the formulation of the four-dimensional Wess-Zumino model. 

(i) The Clifford products, which in the d x  ~ basis are rather involved, 
reduce in the Zab basis to matrix products 

�9 = y~ r v = E < , ( x ) Z . ,  
ab cd 

(11) 

~) V V = Z Ct~ab~cdZabZcd = 4~ (q~r 
abcd ad 

(ii) Scalar content of the Clifford product. In the Z basis the projec- 
tion over O-forms (denoted <,>) reduces to the trace of the coordinate 
matrix. Indeed, in the Z basis the only elements containing O-forms are on 
the diagonal; therefore 

<@>=<~@'bZ~b) =~ab ~ b a a b = t r ( d P )  

Therefore for an arbitrary product <(I) v ~> = 4 tr(q~r 
Using the explicit construction of an algebraic spinor presented in this 

section, below we show the equivalence between the DK and four indepen- 
dent ordinary Dirac equations. 

3. D I R A C - K A E H L E R  F O R M A L I S M  

The DK formalism arises as an alterntive to the Dirac approach to the 
linearization of the Klein-Gordon equation. In terms of the d and 6 
operators defined in the Grassman algebra of differential forms (Plebafiski, 
1984; Becher and Joos, 1982), the D'Alembert operator is written as 

A = ( d  - a )2  
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Hence, the square root of the Kle in-Gordon equation reads 

(d - 6 + ira) (I) = 0 (12) 

where �9 is a linear combination of differential r-forms, i.e., it belongs to 
the Grassman algebra of differential forms. Equation (12) was proposed by 
Kaehler (1962) and it is known as the DK equation. 

To write equation (12) in terms of the components with respect to the 
Z basis, we will use the relations 

dffJ = dx  ~ ^ 3~ e~ 
(13) 

~ = - e~la~ 

Then the DK equation becomes 

(d -- 6 + i m ) ~  = (dx ~' v ~,  + irn) ~ ~OabZab 
ab 

abe cb 

= ~ [(7~du + irn)(O]~bZcb (14) 
cb 

= 0  

=~. (~'a~, + im)O = 0 

From this equation we conclude that elements of left ideals satisfying the 
DK equation are spinors which satisfy ordinary Dirac equations. 

In a similar way we can show that the solutions of the adjoint Dirac 
equation 

3 ~, ~ v dx  ~' - irn(o = 0 (15) 

are elements of right ideals of the Clifford algebra. In fact, there exists a 
simple relation between the solutions of the DK equation and the solutions 
of the adjoint DK equation in terms of the main morphisms, which to our 
knowledge has not been previously reported in the literature. Indeed, using 
equation (4) and dx" ^ Aqb = ~b ^ dx  ~', we obtain 

O a~ v dx"  = dx ~' ^ O . ( A *  ) - e~'_]d~,(ACb) = (d + 6 ) A *  

Therefore equation (15) becomes 

((d + 6)A - im)d9 = 0 

Applying the main morphisms to this equation and using the relations 

A d  = - d A ,  A6  = - 6 A ,  Bd  = dAB,  B~ = - 6 A B  
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we finally obtain the adjoint DK equation 

(d - 6 + im)ABaP = 0 

Clearly, the action of A B  on �9 generalizes the well-known definition of the 
adjoint Dirac spinor 

(b = ABa~ 

We are now in a position to construct a basis-independent Lagrangian 
describing half-spin particles in terms of a superposition of r-forms. 
Furthermore, we know that differential forms, or their components, are the 
natural mathematical tools to describe boson fields. Hence, the formulation 
of a supersymmetric model in terms of the elements of the Clifford algebra 
arises naturally. 

4. D I R A C - K A E H L E R  APPROACH TO THE W E S S - Z U M I N O  
M O D E L  

4.1. Two-Dimensional Model 

Aratyn and Zimmerman (1984) (AZ) used the DK approach to 
formulate the two-dimensional Wess-Zumino model. They assumed that 
fermions are described by the even elements of a differential form 

1 
=fo + ~ f u v  axu ^ axv =fo + f , 2 d  x '2 

~g* = f *  +f*2 dx'2 

whereas (I) is connected to the bosonic field 

In this approach the Wess-Zumino Lagrangian density is given by (Aratyn 
and Zimmerman, 1984) 

L = P0[~* A ~ + 2iW*(d - 6)dx 2 v q2 - W '2 

- - i V *  v dx 2 v q / v  (dxl2 + 1) v dx2W" 

- i~F * v dx 2 v ~ { J ( d x  12 - 1) V dxZW "*] 

where W(q~) is the superpotential, which is an analytic function of the 
scalar field q~, Po denotes the projection on zero forms, and W ' =  dW/dc~, 

etc. 
Correspondence with the usual two-dimensional Wess-Zumino model 

can be achieved by identifying Z1 =fo +f~2, ~(2 =f0 --/12 as the components 
of a two-dimensional spinor. Aratyn and Zimmerman correctly pointed out 
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that the components of this spinor have different flavor, which in the 
language we are using means that the components of the spinor belong to 
different left ideals. However, as we have shown in the previous section, a 
Dirac field must be described by a left ideal. 

An intriguing possibility is the extension of the D K  approach to the 
Wess-Zumino model to other dimensions. It turns out, however, that the 
correspondence between the description of fermionic fields as a combina- 
tion of the even elements of a differential form and the one in terms of  left 
ideals of a Clifford algebra is valid only in two dimensions. 

Indeed, in two dimensions we can choose the matrices as 

71 = ial; 72 = ia2 

where ai are the Pauli matrices and the metric is given by 

01) 
Therefore the Z matrix is 

1 - -  d x  12 

z = _ ( d x  I "q- d x 2 )  

which for a general 

=fo + f~dx ~' + l f~vdx~' 

implies 

i(dx I - dx2)~ 

l q - d x  12 J 

^ d x  v 

{ fo--f12 i ( f l  - - A ) ~  

~k = \ i ( f~  + A )  fo +f~2 J 

Notice that the components of  the AZ spinor belong to different left ideals. 
It is easily seen that the correspondence between the Wess-Zumino model 
and the AZ formulation is due to the following facts: (a) Z contains even 
elements only on the diagonal. Therefore ~k*= ~. (b) 727" is diagonal. 
These characteristics are valid only in two dimensions. Therefore in higher 
dimensions a new formulation is necessary. Before going to four dimen- 
sions, let us remark that in two dimensions we deal with two ideals and 
also with two even elements and thus a one-to-one correspondence can be 
established among them. In more than two dimensions such a one-to-one 
correspondence is not possible. Thus, for example, in four dimensions we 
have eight even elements and only four ideals. Moreover, once the elements 
of different left ideals are combined, the proper transformations under the 
Lorentz group are not ensured. 
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4.2. Four-Dimensional Wess-Zumino Model 

In terms of equation (16) and the projection over zero forms discussed 
below equation (11), the four-dimensional supersymmetric Wess-Zumino 
model is given by 

with 

where 

L = L K + L n + L r  

1 i 
a~r + ~ <~7 v ( a -  a)~> LK = ~ 8,, q~ v 

1 
L u =  W ' v  F_ + W'*  v F +  + ~ F +  v F _  

L, .  = - w r ' ( c e  v v _  > - w " * ( ~  v ' e  + > 

= A B W ;  ~+_ = (1 + idx 0123) 

with F_ the usual auxiliary fields. 
Using the Z basis, it is straightforward to convince oneself that this 

expression reduces to the Wess-Zumino Lagrangian. 
For completeness we list below the SUSY transformations: 

6 ~  = 2 (g  v W_  ) 

6F_ = --2i(g v (d -- 6)W_ ) 

6q j_ = f  v F_ - / d ~  v E+ 

6q? + = e+ v F+ - idol* v ~_ 

fig* = 2( f  v ~ +  ) 

aF+ = - -2 i ( f  v (d - 6)W+ ) 

6 ~ _ = f _  v F + + i g +  v d ~ *  

3CP+ = g+ v F_  + i f_ v (d - ~)r 

5. CONCLUSIONS 

We have discussed the algebraic spinors and their use in the formula- 
tion of four-dimensional SUSY models. [Extensions to other dimensions 
are straightforward because the main characteristics of the Z basis are 
preserved and the key relation, equation (8), remains unchanged except 
for some multiplicative factors.] In particular, we have clarified the differ- 
ence with the (inconsistent) description in terms of even elements of the 
Clifford algebra. We also introduced the ~ [equation (16)] which fulfills the 
adjoint DK equation and greatly simplifies the formulation in arbitrary 
dimensions. 
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